Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36892829

RESUMEN

Copper cobalt selenide, CuCo2Se4, has been identified as an efficient catalyst for electrocatalytic CO2 reduction, exhibiting high selectivity for carbon-rich and value-added products. Achieving product selectivity is one of the primary challenges for CO2 reduction reactions, and the catalyst surface plays a pivotal role in determining the reaction pathway and, more importantly, the intermediate adsorption kinetics leading to C1- or C2+-based products. In this research, the catalyst surface was designed to optimize the adsorption of the intermediate CO (carbonyl) group on the catalytic site such that its dwell time on the surface was long enough for further reduction to carbon-rich products but not strong enough for surface passivation and poisoning. CuCo2Se4 was synthesized through hydrothermal method, and the assembled electrode showed the electrocatalytic reduction of CO2 at various applied potentials ranging from -0.1 to -0.9 V vs RHE. More importantly, it was observed that the CuCo2Se4-modified electrode could produce exclusive C2 products such as acetic acid and ethanol with 100% faradaic efficiency at a lower applied potential (-0.1 to -0.3 V), while C1 products such as formic acid and methanol were obtained at higher applied potentials (-0.9 V). Such high selectivity and preference for acetic acid and ethanol formation highlight the novelty of this catalyst. The catalyst surface was also probed through density functional theory (DFT) calculations, and the high selectivity for C2 product formation could be attributed to the optimal CO adsorption energy on the catalytic site. It was further estimated that the Cu site showed a better catalytic activity than Co; however, the presence of neighboring Co atoms with the residual magnetic moment on the surface and subsurface layers influenced the charge density redistribution on the catalytic site after intermediate CO adsorption. In addition to CO2 reduction, this catalytic site was also active for alcohol oxidation producing formic or acetic acid from methanol or ethanol, respectively, in the anodic chamber. This report not only illustrates the highly efficient catalytic activity of CuCo2Se4 for CO2 reduction with high product selectivity but also offers a proper insight of the catalyst surface design and how to obtain such high selectivity, thereby providing knowledge that can be transformative for the field.

2.
ACS Appl Mater Interfaces ; 14(34): 39535-39547, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35984223

RESUMEN

The role of disorder and particularly of the interfacial region between crystalline and amorphous phases of indium oxide in the formation of hydrogen defects with covalent (In-OH) or ionic (In-H-In) bonding are investigated using ab initio molecular dynamics and hybrid density-functional approaches. The results reveal that disorder stabilizes In-H-In defects even in the stoichiometric amorphous oxide and also promotes the formation of deep electron traps adjacent to In-OH defects. Furthermore, below-room-temperature fluctuations help switch interfacial In-H-In into In-OH, creating a new deep state in the process. This H-defect transformation limits not only the number of free carriers but also the grain size, as observed experimentally in heavily H-doped sputtered In2Ox. On the other hand, the presence of In-OH helps break O2 defects, abundant in the disordered indium oxide, and thus contributes to faster crystallization rates. The divergent electronic properties of the ionic vs covalent H defects─passivation of undercoordinated In atoms vs creation of new deep electron traps, respectively─and the different behavior of the two types of H defects during crystallization suggest that the resulting macroscopic properties of H-doped indium oxide are governed by the relative concentrations of the In-H-In and In-OH defects. The microscopic understanding of the H defect formation and properties developed in this work serves as a foundation for future research efforts to find ways to control H species during deposition.

3.
ACS Appl Mater Interfaces ; 14(10): 12340-12349, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35232012

RESUMEN

Zirconium oxide (ZrOx) is an attractive metal oxide dielectric material for low-voltage, optically transparent, and mechanically flexible electronic applications due to the high dielectric constant (κ ∼ 14-30), negligible visible light absorption, and, as a thin film, good mechanical flexibility. In this contribution, we explore the effect of fluoride doping on structure-property-function relationships in low-temperature solution-processed amorphous ZrOx. Fluoride-doped zirconium oxide (F:ZrOx) films with a fluoride content between 1.7 and 3.2 in atomic (at) % were synthesized by a combustion synthesis procedure. Irrespective of the fluoride content, grazing incidence X-ray diffraction, atomic-force microscopy, and UV-vis spectroscopy data indicate that all F:ZrOx films are amorphous, atomically smooth, and transparent in visible light. Impedance spectroscopy measurements reveal that unlike solution-processed fluoride-doped aluminum oxide (F:AlOx), fluoride doping minimally affects the frequency-dependent capacitance instability of solution-processed F:ZrOx films. This result can be rationalized by the relatively weak Zr-F versus Zr-O bonds and the large ionic radius of Zr+4, as corroborated by EXAFS analysis and MD simulations. Nevertheless, the performance of pentacene thin-film transistors (TFTs) with F:ZrOx gate dielectrics indicates that fluoride incorporation reduces I-V hysteresis in the transfer curves and enhances bias stress stability versus TFTs fabricated with analogous, but undoped ZrOx films as gate dielectrics, due to reduced trap density.

4.
Proc Natl Acad Sci U S A ; 117(31): 18231-18239, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32703807

RESUMEN

The field-effect electron mobility of aqueous solution-processed indium gallium oxide (IGO) thin-film transistors (TFTs) is significantly enhanced by polyvinyl alcohol (PVA) addition to the precursor solution, a >70-fold increase to 7.9 cm2/Vs. To understand the origin of this remarkable phenomenon, microstructure, electronic structure, and charge transport of IGO:PVA film are investigated by a battery of experimental and theoretical techniques, including In K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS); resonant soft X-ray scattering (R-SoXS); ultraviolet photoelectron spectroscopy (UPS); Fourier transform-infrared (FT-IR) spectroscopy; time-of-flight secondary-ion mass spectrometry (ToF-SIMS); composition-/processing-dependent TFT properties; high-resolution solid-state 1H, 71Ga, and 115In NMR spectroscopy; and discrete Fourier transform (DFT) analysis with ab initio molecular dynamics (MD) liquid-quench simulations. The 71Ga{1H} rotational-echo double-resonance (REDOR) NMR and other data indicate that PVA achieves optimal H doping with a Ga···H distance of ∼3.4 Å and conversion from six- to four-coordinate Ga, which together suppress deep trap defect localization. This reduces metal-oxide polyhedral distortion, thereby increasing the electron mobility. Hydroxyl polymer doping thus offers a pathway for efficient H doping in green solvent-processed metal oxide films and the promise of high-performance, ultra-stable metal oxide semiconductor electronics with simple binary compositions.

5.
J Am Chem Soc ; 140(39): 12501-12510, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30183272

RESUMEN

We report the results of a study to enhance metal oxide (MO) thin-film transistor (TFT) performance by doping both the semiconductor (In2O3) and gate dielectric (Al2O3) layers with boron (yielding IBO and ABO, respectively) and provide the first quantitative analysis of how B doping affects charge transport in these MO dielectric and semiconducting matrices. The impact of 1-9 atom % B doping on MO microstructure, morphology, oxygen defects, charge transport, and dielectric properties is analyzed together, in detail, by complementary experimental (microstructural, electrical) and theoretical (ab initio MD, DFT) methods. The results indicate that B doping frustrates In2O3 crystallization while suppressing defects responsible for electron trapping and carrier generation. In the adjacent Al2O3 dielectric, B doping increases the dielectric constant and refractive index while reducing leakage currents. Furthermore, optimized solution-processed TFTs combining IBO channels with 6 atom % B and ABO dielectrics with 10 atom % B exhibit field effect mobilities as high as 11 cm2 V-1 s-1, current on/off ratios >105, threshold voltages = 0.6 V, and superior bias stress durability.

6.
J Am Chem Soc ; 140(29): 9261-9268, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-29956935

RESUMEN

The phase-change (PC) materials in the majority of optical data storage media in use today exhibit a fast, reversible crystal → amorphous phase transition that allows them to be switched between on (1) and off (0) binary states. Solid-state inorganic materials with this property are relatively common, but those exhibiting an amorphous → amorphous transition called polyamorphism are exceptionally rare. K2Sb8Se13 (KSS) reported here is the first example of a material that has both amorphous → amorphous polyamorphic transition and amorphous → crystal transition at easily accessible temperatures (227 and 263 °C, respectively). The transitions are associated with the atomic coordinative preferences of the atoms, and all three states of K2Sb8Se13 are stable in air at 25 °C and 1 atm. All three states of K2Sb8Se13 exhibit distinct optical bandgaps, Eg = 1.25, 1.0, and 0.74 eV, for the amorphous-II, amorphous-I, and crystalline versions, respectively. The room-temperature electrical conductivity increases by more than 2 orders of magnitude from amorphous-I to -II and by another 2 orders of magnitude from amorphous-II to the crystalline state. This extraordinary behavior suggests that a new class of materials exist which could provide multistate level systems to enable higher-order computing logic circuits, reconfigurable logic devices, and optical switches.

7.
Inorg Chem ; 54(13): 6513-9, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26046467

RESUMEN

Mn3Ta2O8, a stable targeted material with an unusual and complex cation topology in the complicated Mn-Ta-O phase space, has been grown as a ≈3-cm-long single crystal via the optical floating-zone technique. Single-crystal absorbance studies determine the band gap as 1.89 eV, which agrees with the value obtained from density functional theory electronic-band-structure calculations. The valence band consists of the hybridized Mn d-O p states, whereas the bottom of the conduction band is formed by the Ta d states. Furthermore, out of the three crystallographically distinct Mn atoms that are four-, seven-, or eight-coordinate, only the former two contribute their states near the top of the valence band and hence govern the electronic transitions across the band gap.

8.
Chem Mater ; 26(18): 5401-5411, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25678743

RESUMEN

A series of In2O3 thin films, ranging from X-ray diffraction amorphous to highly crystalline, were grown on amorphous silica substrates using pulsed laser deposition by varying the film growth temperature. The amorphous-to-crystalline transition and the structure of amorphous In2O3 were investigated by grazing angle X-ray diffraction (GIXRD), Hall transport measurement, high resolution transmission electron microscopy (HRTEM), electron diffraction, extended X-ray absorption fine structure (EXAFS), and ab initio molecular dynamics (MD) liquid-quench simulation. On the basis of excellent agreement between the EXAFS and MD results, a model of the amorphous oxide structure as a network of InO x polyhedra was constructed. Mechanisms for the transport properties observed in the crystalline, amorphous-to-crystalline, and amorphous deposition regions are presented, highlighting a unique structure-property relationship.

9.
J Am Chem Soc ; 135(15): 5685-92, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23484800

RESUMEN

To exploit the full potential of multicomponent wide-bandgap oxides, an in-depth understanding of the complex defect chemistry and of the role played by the constituent oxides is required. In this work, thorough theoretical and experimental investigations are combined in order to explain the carrier generation and transport in crystalline InGaZnO4. Using first-principles density functional approach, we calculate the formation energies and transition levels of possible acceptor and donor point defects as well as the implied defect complexes in InGaZnO4 and determine the equilibrium defect and electron densities as a function of growth temperature and oxygen partial pressure. An excellent agreement of the theoretical results with our Brouwer analysis of the bulk electrical measurements for InGaZnO4 establishes the Ga antisite defect, GaZn, as the major electron donor in InGaZnO4. Moreover, we show that the oxygen vacancies, long believed to be the carrier source in this oxide, are scarce. The proposed carrier generation mechanism also explains the observed intriguing behavior of the conductivity in In-rich vs Ga-rich InGaZnO4.

10.
J Phys Chem B ; 110(48): 24361-70, 2006 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17134188

RESUMEN

Density-functional theory (DFT) is employed to investigate the structural, electronic, and transport properties of several isomeric fluoroarene-oligothiophene-based semiconductors. Three oligothiophene systems varying in the perfluoroarene group positions within the molecule are studied to understand the electronic structure leading to the observed mobility values and to the n- or p-type behavior in these structures. Analyses of both intermolecular interactions in dimers and extended interactions in crystalline structures afford considerable insight into the electronic properties and carrier mobilities of these materials, as well as the polarity of the charge carriers. From the calculated carrier effective masses, we find that sterically governed molecular planarity plays a crucial role in the transport properties of these semiconductors. Our calculations correlate well with experimentally obtained geometries, highest-occupied molecular orbital (HOMO)/lowest-unoccupied molecular orbital (LUMO) energies, and the experimental carrier mobility trends among the systems investigated.

11.
J Am Chem Soc ; 127(24): 8796-804, 2005 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-15954786

RESUMEN

A series of yttrium-doped CdO (CYO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 410 degrees C by metal-organic chemical vapor deposition (MOCVD), and their phase structure, microstructure, electrical, and optical properties have been investigated. XRD data reveal that all as-deposited CYO thin films are phase-pure and polycrystalline, with features assignable to a cubic CdO-type crystal structure. Epitaxial films grown on single-crystal MgO(100) exhibit biaxial, highly textured microstructures. These as-deposited CYO thin films exhibit excellent optical transparency, with an average transmittance of >80% in the visible range. Y doping widens the optical band gap from 2.86 to 3.27 eV via a Burstein-Moss shift. Room temperature thin film conductivities of 8,540 and 17,800 S/cm on glass and MgO(100), respectively, are obtained at an optimum Y doping level of 1.2-1.3%. Finally, electronic band structure calculations are carried out to systematically compare the structural, electronic, and optical properties of the In-, Sc-, and Y-doped CdO systems. Both experimental and theoretical results reveal that dopant ionic radius and electronic structure have a significant influence on the CdO-based TCO crystal and band structure: (1) lattice parameters contract as a function of dopant ionic radii in the order Y (1.09 A) < In (0.94 A) < Sc (0.89 A); (2) the carrier mobilities and doping efficiencies decrease in the order In > Y > Sc; (3) the dopant d state has substantial influence on the position and width of the s-based conduction band, which ultimately determines the intrinsic charge transport characteristics.

12.
J Am Chem Soc ; 126(42): 13787-93, 2004 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-15493938

RESUMEN

A series of Sc-doped CdO (CSO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 400 degrees C by MOCVD. Both the experimental data and theoretical calculations indicate that Sc3+ doping shrinks the CdO lattice parameters due to its relatively small six-coordinate ionic radius, 0.89 angstroms, vs 1.09 angstroms for Cd2+. Conductivities as high as 18100 S/cm are achieved for CSO films grown on MgO(100) at a Sc doping level of 1.8 atom %. The CSO thin films exhibit an average transmittance >80% in the visible range. Sc3+ doping widens the optical band gap from 2.7 to 3.4 eV via a Burstein-Moss energy level shift, in agreement with the results of band structure calculations within the sX-LDA (screened-exchange local density approximation) formalism. Epitaxial CSO films on single-crystal MgO(100) exhibit significantly higher mobilities (up to 217 cm2/(V x s)) and carrier concentrations than films on glass, arguing that the epitaxial CSO films possess fewer scattering centers and higher doping efficiencies due to the highly textured microstructure. Finally, the band structure calculations provide a microscopic explanation for the observed dopant size effects on the structural, electronic, and optical properties of CSO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...